Installation
This guide will help you install OpenTryOn on your system.
Prerequisites
Before installing OpenTryOn, ensure you have:
- Python 3.10 or higher
- CUDA-capable GPU (recommended for best performance)
- Conda or Miniconda (recommended)
- Git (for cloning the repository)
Installation Methods
Method 1: Using Conda (Recommended)
Conda is the recommended installation method as it handles all dependencies including CUDA libraries.
Step 1: Clone the Repository
git clone https://github.com/tryonlabs/opentryon.git
cd opentryon
Step 2: Create Conda Environment
conda env create -f environment.yml
conda activate opentryon
This will create a new conda environment named opentryon with all required dependencies.
Step 3: Install Package
pip install -e .
Method 2: Using pip
If you prefer using pip, you can install dependencies directly:
Step 1: Clone the Repository
git clone https://github.com/tryonlabs/opentryon.git
cd opentryon
Step 2: Create Virtual Environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
Step 3: Install Dependencies
pip install -r requirements.txt
pip install -e .
Method 3: Install from PyPI (Future)
Once published to PyPI, you'll be able to install directly:
pip install opentryon
Verify Installation
After installation, verify that OpenTryOn is correctly installed:
python -c "import tryon; print('OpenTryOn installed successfully!')"
Configuration
Environment Variables
Create a .env file in the project root with the following variables:
Preprocessing (Required for local preprocessing)
U2NET_CLOTH_SEG_CHECKPOINT_PATH=path/to/cloth_segm.pth
U2NET_SEGM_CHECKPOINT_PATH=path/to/u2net.pth
API Integrations (Optional, for cloud-based services)
# Segmind Try-On Diffusion API
SEGMIND_API_KEY=your_segmind_api_key
# Kling AI Virtual Try-On API
KLING_AI_API_KEY=your_kling_api_key
KLING_AI_SECRET_KEY=your_kling_secret_key
# Amazon Nova Canvas (AWS Bedrock)
AWS_ACCESS_KEY_ID=your_aws_access_key
AWS_SECRET_ACCESS_KEY=your_aws_secret_key
AMAZON_NOVA_REGION=us-east-1
# Google Gemini (Nano Banana Image Generation)
GEMINI_API_KEY=your_gemini_api_key
Note: You only need to configure the APIs you plan to use. For preprocessing-only workflows, only the U2Net checkpoints are required.
Download Model Checkpoints
U2Net Cloth Segmentation
Download the checkpoint from the huggingface-cloth-segmentation repository:
# Example: Download and place in project root
wget https://huggingface.co/levihsu/OOTDiffusion/resolve/main/cloth_segm.pth
U2Net Human Segmentation
Download U2Net weights for human segmentation:
# Download from official U2Net repository
# Place in appropriate location and update U2NET_SEGM_CHECKPOINT_PATH
GPU Setup (Optional but Recommended)
For optimal performance, ensure CUDA is properly configured:
Check CUDA Installation
import torch
print(f"CUDA available: {torch.cuda.is_available()}")
print(f"CUDA version: {torch.version.cuda}")
print(f"GPU: {torch.cuda.get_device_name(0) if torch.cuda.is_available() else 'None'}")
Install CUDA-Compatible PyTorch
If CUDA is not detected, install the appropriate PyTorch version:
# For CUDA 11.8
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu118
# For CUDA 12.1
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu121
Troubleshooting
Common Issues
Issue: Import Errors
Solution: Ensure all dependencies are installed:
pip install -r requirements.txt
Issue: CUDA Out of Memory
Solution: Reduce batch size or image resolution in your code.
Issue: Model Checkpoint Not Found
Solution: Ensure checkpoint paths in .env are correct and files exist.
Issue: Dependency Conflicts
Solution: Use conda environment to isolate dependencies:
conda env create -f environment.yml
conda activate opentryon
Getting Help
If you encounter issues:
- Check the Troubleshooting Guide
- Search GitHub Issues
- Ask on Discord
Next Steps
Once installed:
- Quick Start Guide: Get started with API integrations, datasets, and preprocessing
- Configuration Guide: Set up environment variables and API keys
- API Reference: Explore cloud-based virtual try-on and image generation APIs
- Datasets Module: Learn how to load and work with fashion datasets
- Preprocessing: Process garments, models, and images for virtual try-on
Key Features to Explore
-
🔌 API Integrations: Use cloud-based services without local model setup
- Segmind Try-On Diffusion
- Kling AI Virtual Try-On
- Amazon Nova Canvas
- Nano Banana Image Generation
-
📊 Datasets: Load and work with fashion datasets
- Fashion-MNIST (60K examples)
- VITON-HD (11K+ pairs)
- Subjects200K (200K paired images)
-
🛠️ Preprocessing: Process images for virtual try-on
- Garment segmentation and extraction
- Human segmentation
- Pose estimation